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Singular integral equations arise frequently in electromagnetic and acoustic theory. We 
present here a numerical technique for solving integral equations which are meaningful in the 
sense of Cauchy principal value or Hadamard finite parts by a projection method in Hilbert 
spaces. Application to the radiation problem from a flanged plane waveguide is given. 

I. INTRODUCTION 

The integral representation of the diffracted, or radiated, electromagnetic or 
acoustic field can lead to the introduction of divergent integrals which are meaningful 
in the sense of the Cauchy principal value or Hadamard finite parts [ 1, lo]. 

The numerical evaluation of these integrals is not easy and the methods used by 
various authors over the last few years have consisted either in isolating the 
singularity [3, 5,8] or in some cases in using a regular approximate kernel 16, 71. 
The convergence of the results is difficult to reach in the first method: If the interval 
isolating the singularity is very narrow the results are unstable and the computing 
time may become prohibitive; on the other hand, if it is very large the approximation 
in the neighbourhood of the isolation is no longer valid. In the second method the 
results can be completely wrong. 

In this paper, we use a numerical method approximating the distributions of the 
form: principal value of l/x denoted by v.p. l/x and finite parts of l/x* denoted p.f. 
l/x”’ with a linear combination of Dirac distributions. 
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Communications.” Paris, France (Convention No. 77.34.244.00.480.75.01). 
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First, we shall examine the problem of radiation from a flanged waveguide. This 
problem has received considerable attention in recent years with different formalisms 
or approximations [ 11, 171. Then, we shall give the general principles of the 
numerical method and test it on canonical cases. Finally we shall apply it to the 
considered problem. 

II. FORMULATION OF THE PROBLEM 

Let us consider a parallel plate flanged waveguide filled with a dielectric with 
constants E,, (T,, flu1 radiating into another dielectric medium with constants cZ, c2, p2 
(Fig. la and b). We assume that the field quantities are not y dependent. 

FIG. 1. Geometry of the problem. 



SOLUTION OF SINGULAR INTEGRAL EQUATIONS 359 

All polarization cases are derived from the two elementary polarizations E and H, 
where the electric and magnetic fields, respectively, are rectilinearly polarized along 
the y axis. 

We shall represent the y component fields by the notation u(x, z). The time depen- 
dence e-‘“’ will be omitted. 

The integral representation will be established for the E case because it is the only 
case where divergent integrals appear. 
Then we have 

Ej(X, Z) = { 0, u/(X, Z), 0) 5 j= 1,2, 
(1) 

Hj(x, z, = & (gy X v”j(x, z)), j= 1,2, 
J J 

where EY is the unit vector along the y axis. The subscript j = 1, 2 denotes the electric 
magnetic fields in media 1 and 2 (as shown in Figs. la and b) and 

kj = ~~p~uiw’ + iojpjo 

= 02e,,jPj, 

in which (2) 

&,,j = &j + iOj/W, 

Vj’ = PjI&c,j* 

If A,,, and B, are the amplitudes of the incident and reflected modes, respectively, the 
field may be written in the waveguide as the infinite series of modes 

UI(X, Z) = 2 (A,,,e-ym’ + Bmeh’) v,(x). 
m 

In the expression, the A, are considered known (emitting situation); the B, have to 
be determined. 

v,(x) = sin&,x + m(Q)), (3) 

in which 

ym=j./m=a,-ijl, (4) 

is the propagation constant and k,, = mn/a (a is the waveguide width). 
For z > 0, using the Green’s theorem [ 181, the field may be given by the integral 

representation 

I 
a/2 

u,(x, z) = 2 u2(x’, 0) a,,G(x, x’; z, z’) li,zo dx’, 
-a/2 

(5) 



360 CARON,DUPUY,ANDPlCHOT 

where 

G(x, x’; t, z’) = + I#‘@, &x - x’)* + (z - z’)* ), 

in which I$,” denotes the Hankel function of first kind and zero order. 
When the boundary conditions at z = 0 are applied, we obtain the infinite system 

where 

K,(x) = Ym w,(x) + F,(x), 

L,(x) = Ym vfm(x) - ~rn@L 

in which 

F,(x)=2f’* ~~(xI)al;,G(x,x’;z,z’)l~=;,=, dx’. 
’ -a/2 

The integral in (7) is interpreted in the sense of Hadamard finite parts [ 11 

We note 

&G(x, x'; z, z') /;=z,=o Y 
1 

nIx-x’l* 
for x-+x’. 

(7) 

(8) 

By truncating the series in (6) to A4 terms and enforcing the resulting equation at 
the points x’ = x,, x 2 ,..., x, in the interval [-a/2, a/2 ), we obtain the finite linear 
system, numerically solved, 

M M 

y L&J B, = x K,(x,,)A,, 
my, 

p = 1, 2 ,..., M, 
m=l 

from which the B, can be computed in terms of the known A,. 

III. PRINCIPLE OF THE PROJECTION METHOD IN HILBERT SPACES 

The main numerical difficulty in the problem described in Section II is the 
computation of the integrals defined in the sense of Hadamard finite parts. 

We make use of the theorem demonstrated in Cherruault 1201 and Nissen 12 I 1. 
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p.f. I/xm belongs to the dual space H-” of the Sobolev space 
H”. Then v.p. l/x and v.p. l/x truncated belong to H-‘. 

Thus, such distributions can be approximated by the method of projection in Hilbert 
spaces. More precisely, for a given distribution t, we look for an approximate 
distribution t,, in the form of a linear combination of Dirac distributions. 

t,= 5 CP&7a’ 
p=1 

(10) 

in which up are fixed points of the support of t distribution. t and t, must coincide on 
a set of basis function f, such as 

i.e., the solutions of the equations 

q = 1, 2 ,..., N, (11) 
where A is the isomorphism between the Sobolev space H” and its topological dual 
H-“. 

If we denote by E, the solutions of system (1 l), we may write 

i.e., the system 
(t,v, E,) = (6 EJ, q = 1, 2 ,..., N, (12) 

? C&,(a,) = (t, Eh q = 1, 2 ,..., N. 
p=1 

The calculation of the coefficients C, related to the distribution p.f. l/x* and all the 
convergence demonstrations are described in [20]. But in order to minimize the 
computation time and memory requirements for the matrix inversion, the relation 
linking p.f. l/x’ and v.p. l/x applied to a differentiable function d has been used. 
Thus we have, for p.f. l/x* truncated at the segment (A, B), 

(13) 

The calculation of p.f. I/x* is thus reduced to that of v.p. I/x (applied to the 
derivative of the function) and of the quantities &4)/A and #@3)/B. 

IV. EVALUATION OF THE COEFFICIENTS C, RELATED TO THE DISTRIBUTION v.p. l/x 

Let 0 be a regular bounded open domain in R. Truncated v.p. l/x belongs to the 
topological dual of H’(Q) in which 

H’(Q) = {u/u E P(R), 24’ E P(R)}, 
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u’ being the derivative of u in the distributional sense. The coeffkients C, of approx- 
imation 

of this distribution are the solutions of the linear system 

2 C,E,(a,)=(v.p.-$E,), q=1,2 ,..., N, 
p=1 

with E, E H’ and satisfying AE, = ?iOq, in which A is now the isomorphism of H’ on 
H- ‘. 
If we use the following lemma: 

For every distribution t E Hem, there is one and only one 
element u of H”’ such that 

2 (-ly’D”u=t 
j=O 

with &, = u(2i) in the distributional sense, E, are solutions of the equation 

d2E 
-ti+E,=daq. 

With the help of the Fourier transform, the solution of this equation is found to be 

E,(x) = fe- 1X-b 

and the system whose solution gives the coeffkients C, related to the distribution 
v.p. l/x may then be written in the form 

N 

1 Cpe-‘“q-ap’ = v.p. f, e-lX-aqI), q = 1, 2 ,.,., N. 
p=1 

The right-hand sides of this system are expressed as functions of exponential 
integrals. In the case of v.p. l/x truncated at [A, B] they may be written in the form 

1 
s, = v.p. -, e-lxeaQi 

X 
) = v.p.1; Tdx. 

Hence 

s,,eeaq[Ei(a,) - Ei(A)] + e@[Ei(-E) - Ei(-a,)], (15) 
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where Ei(x) = J?,(e’/t) dt in the sense of principal value if x > 0. If points a4 are 
equidistant and such that 

a ,+,=a,+h 

the matrix of the system is Toeplitz and takes the form 

Without computing the inverse matrix, we obtain the coefficients C, related to the 
distribution v.p. l/x truncated at [A, B] in the form 

c = (1+e-2h)sp-e-hs,_,-e-h~,+, 
I, 1 _ e-*h 3 Pf Ln, 

S, - s2edh 
c,=-- 

1 ee-*h ' 

c,= 
S,-sS,-,e-h 

1 _ e-*” 

(16) 

with the s, obtained by formula (15). 
We note that, in order to calculate the coefficient Cl-, , we need sie2, si-, and si. 

To compute Ci, it is necessary to compute Si+, only, if the values of si and si+ i have 
been stored. 

V. NUMERICAL APPLICATIONS 

V. 1. Calculation of (p.f. l/x2, 0) 

In order to show the accuracy of the method and thus to test its validity, the 
following functions have been used, 

(a) Q(x)=cosx, 

(b) 4(x> = ex, 
functions for which tabulations of the exact values of (p.f. l/x*, 4) may be found 
from sine and exponential integrals. 

Cc) Q(x) = I4 Y,(Ixl), h w ere Y, is the Bessel function of the first kind. 4(x) is a 
function whose value may be found by integration of the series representation of Y, 
by Abramovitz and Stegun [ 191. 
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The numerical approximation is obtained from 

The coefficient C,, p = 1, 2 ,..., N, N fixed, related to the distribution v.p. l/x 
truncated at [A, B] are found from formulas (15) and (16), whence the sum 

is computed, and a p+, = aP + H with H = (B - A)/(N - 1). To compute #‘(a,), we 
have used either 

-the explicit expression of 4’ when it can be obtained easily, or 
-a numerical estimation of $‘(a,) from the centered difference formula 

4,(a )= ~@,++fYap-~) 
P 2E 

with E = H or H/10. 
The results are given in Tables I and II. 
It is seen that the results found by the methods described here are in excellent 

agreement with the correct results found by established methods. 

V.2. Application to the Resolution of Singular Integral Equations 

Let us consider a singular integral equation 

v.p. 
I 
IA Sdx=f(t), equation of the first kind, 

$(I) + v.p. iI, $& dx = f(t), equation of the second kind, 

where f(t) is the known function, and Q the unknown. 
We approximate the Cauchy principal value v.p. l/(x - 1) by the projection 

method in Hilbert spaces. 

(17) 

where ap E [-A, A], Ci are known. The unknowns are #(a,), p = 1, 2,..., N. Thus we 
obtain a linear system when the relation (17) is written for N values of t: 

Cj#<a,> = f&J k= 1,2 ,..., N, t,E [-A,A], 
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k = 1, 2 ,..., N. 

If we take for points t,, k = I,..., N, the points up which have been used for approx- 
imating v.p. l/(x - t), the matrix of the system is 

l+cy’ c;’ Cf;, 
a2 C, 1+ c;* cz 

C”,’ ON 1 C* 1+ CT 

and we use the projection method in Hilbert spaces N times to determine matrix 
elements. The location of the points a,,..., a,,, is sometimes important. For example, 
the solution of the equation 

4(t) + V.P.if, -$ dx = f + 2t2 + (t2 - t) log 
l-t 

Ii 
1 + t 

is 4(x) =x(x’ - 1). 
The numerical solution shows pratically that the accuracy increases: 

Firstly, when the number of points used in the distribution approximation is larger 
(columns 1 to 3 in Table III (theoretical demonstration is given in [20]). 

Secondly, when the points a1 and uN are close to the ends of the interval (-A, +A) 
(columns 3 to 6 in Table III)--this numerical finding is not yet explained 
theoretically. 

V.3. Application to the Problem of a Flanged Waveguide 

The problem is the determination of the reflected modes B, described in Section II 
in function of incident modes A,,,. 

Let (x’ -x) =X, then the evaluation of F,(x) may be interpreted as p.f. 1/x2 
truncated at ((-a/2 -x), (a/2) -x)) applied to the function 

4,,,(x) = % 1x1 *“(k, 1x1) sin (F + z + m 3 . 
2 

The numerical solution is found in the following steps: 
We fix a number of modes M, M= 8, 12, 16, 32, 64, for instance, and the same 

number of points xi, i = l,..., M, in the aperture of the guide. 
We calculate the elements of the matrix 

Lm(xi), m, i = 1, 2 ,..., M. 
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TABLE IV 

Resolution of the Flanged Plane Waveguide 

Complex Modulus Phase 
(degrees) 

200 
-0.8568 
-0.0454 

0.8580 -177.0 

400 
-0.8563 
-0.035 I 

0.8570 -177.7 

600 
-0.8563 
-0.0334 

0.8570 -177.8 

800 
-0.8563 
-0.03 13 

0.8569 -177.9 

1000 
-0.8564 
-0.03 10 

0.8569 -177.9 

Nofes. Air and water; er = E,, cr, = 0, cz = HOE,, rrr = 15; frequency J= 9GHz; width a = 2.286 cm. 
Values of the amplitude B, of the first reflected mode. N= Number of points for approximating the 
finite parts. 

TABLE V 

Resolution of the Flanged Plane Waveguide 

Complex Modulus 

~- 

Phase 
(degrees) 

200 
-0.729 1 
-0.0650 

0.7320 -174.9 

400 
-0.7292 
-0.0560 

0.73 13 -175.6 

600 
-0.7292 
-0.0545 

0.7313 -175.1 

800 
-0.7294 
-0.0526 

0.7313 -175.9 

-0.7294 
-0.0523 

0.7313 -175.9 

Notes. Dielectric and water; E, =4e0, u, =O, e2 = 70&,, e2 = 15; frequency f= 9GHz; width 
a = 2.286 cm. Values of the amplitude B, of the first reflected mode. N = Number of points for approx- 
imating the finite. 
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TABLE VI 

Comparison between the Hilbert and Classical Isolating Singularity Methods 

M modes 

B, Complex Modulus Phase 
(degrees) 

Computer 
time 

(IBM 370/ 168) 

(Hiltert) -0.073 1 
N=200 -0.1171 

8 
(Direct method) 

N=200 

(Hiiiert) -0.072 1 
N=200 -0.1174 

16 
(Direct method) 

N=200 

0.1380 58 10 set 

-0.08 13 
-0.1480 

0.1689 61 57 set 

0.1378 58 25 set 

-0.0732 
-0.1448 

0.1448 60 1 min 52 sec. 

Notes. E, = Q,, ui = 0, a = 2.286 cm, Ed = co, u2 =0, frequency: 8.355 GHz. 

Every element involves the calculation of an integral in the Hadamard finite parts 
sense as well as the right-hand side of the equation. 

K,(Xi) = Y* $4(x1) + f-,(x,), i = 1, 2 ,..., A!, 

in the particular case A, = 1 and Am = 0 for m # 1. 
We solve the linear system (Mequations - Munknowns) by standard methods. 
The results are given in Tables IV and V for two different guides and media: water 

and air and water and dielectric at a frequency of 9 GHz, taking eight modes into 
account. Only the first reflected mode which has the most significant value is studied 
with an increasing number of points. 

Note the rapid convergence and stability of the results. The computing time is 
small : about 15 set for each 200 supplementary points with an IBM 370/168 com- 
puter. 

No significant variation of the results has been observed with a larger number of 
modes. See Figs. 2 and 3. 

In Table VI the Hilbert method is compared with the direct method which involves 
the numerical application of the definition of the finite parts [8]. In this example 
E = 1O-3 is used with an even Simpson integration algorithm with 200 points. Note 
the rapid convergence of the first reflected mode B, and the small computer time 
required by Hilbert method (M = 8 to 16 modes in each method). 
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The results are compared to those calculated by other methods of analysis (wedge 
diffraction [ 111, Harrington [22] geometrical theory of diffraction (GTD [23 I)). 

The comparisons, shown in Fig. 4, indicate that the results are accurate for a/L 
close to 1. As no approximation in the formulation of the physical problem has been 
considered, the results given by the method of projection in Hilbert spaces may be 
considered as very accurate. 

TABLE VII 

Resolution of the Flanged Plane Waveguide 

B, Complex Modulus Phase Computing Energy 
(degrees) time conservation 

N 

200 -0.073 1 -0.1 111 

8 modes 

0.1380 58 10 set 0.996 

1000 -0.07 16 -0.1107 0.1318 57 26.5 set 0.995 

2000 
-0.0713 
-0.1098 

0.1310 57 

2000 

16 modes 

-0.072 I 
-0.1 I74 

0.1378 58 25 set 0.999 

-0.0708 
-0.1116 

0.1322 58 I min 32 set 

-0.0706 
-0.1110 0.1315 58 2 min 56 set 0.999 

Notes. s, = sI = E,, cr, = u2 = 0; frequency f= 8.355 GHz; width Q = 2.286 cm. Values of the 
amplitude B, of the first reflected mode. N = Number of points for approximating the finite parts. 

A stable convergence of these results is obtained when the number of points in the 
method increases (see Table VII). The method could be used for any a/i but a larger 
a/L leads, for the same accuracy, to an increasing number of points in the method of 
projection in Hilbert spaces and consequently computing times become longer. 
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CONCLUSION 

A class of problems involving singular integral equations has been treated in the 
past by isolating the singularity and evaluating the integral directly according to the 
definition of Hadamard’s finite parts. This method is unstable depending on the 
parameter range in which the singularity is isolated. 

A projection method making use of Hilbert spaces has been developed. It has been 
applied successfully to the calculations of finite parts, the solution of a singular 

IEI 

FIG. 2. Modulus of the diffracted field at different distances from the aperture for the cl = E,,, 
o, = 0. F* = HOE,,, and u2 = 15 guide. 
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I I 1 I 
mn 

-5. ‘2 -‘.Uh 0 2.Rh 1.72 

FIG. 3. Modulus of the diffracted field at different distances from the aperture for the E, = 41:,,. 
a,=0,~~=70~,,,ando,=15guide. 

integral equation with Cauchy principal values and the solution of the flanged 
waveguide problem. This method has been found to be table, accurate and con- 
vergent. 

Singular integral equations arise frequently in electromagnetic and acoustic theory 
and the methods described here could be applied to such problems as radiation from 
antennas with circular symmetry, radiation by a slot or a screen, and scattering by 
cilindrical bodies, for example. 
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0 

-------WEDGE DIFFRACTION i PROJECTION IN THE 

c..a.aa HARRINGTDN 1 HILSERT SPACES 

CISCC GTD QQSMODES 8816MODES 

0.5 0.6 0.6 
- GUIDE WIDTH - WAVELENGTHS my 

~~~~ 4. Comparison between wedge diffraction [ 111, Harrington (221, geometrical theory Of 
diffraction (GTD[23 1) and projection in Hilbert spaces for the amplitude BI of the first reflected mode. 

APPENDIX: THE RADIATION CHARACTERISTIC AND ENERGY CONSERVATION 

In Fig. 1, the field in region z > 0 is obtained by replacing uz(x’, 0) with its modal 
expression in expression(5): 

%(XYZ)=~~ (a,+B,)~~~2~,(x’)~;.G(x,x’;z,z~)l,.~,dx’, 
m 

where 

J,,G(x, x'; z, z')[,,,~ = + 
Z 

d/(x - x’)* + z* 
H(,“(k, &Fq-TT). 

When the observation point (x, z) is sufficiently distant, we can use an asymptotic 
form for the Hankel function. Then we have, in polar coordinates, 
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where 

m 

is the radiation characteristic of the waveguide, in which 

JZK($) = i(-l)k 47&a 
sin(k, a/2 sin 4) 

(k, a sin $)’ - (2K7r)* ’ 

Jx+ I(#) = t-11 X+1 2(2K+ l)?ra 
cos(k,a/2 sin 4) 

(k,a sin (6) - (2K + 1)2 rr2’ 

The power radiated in a non-dissipative medium is obtained by integration of the 
complex Poynting vector over a closed surface. The following expression results, 

\.(lA,12-l~~12)Im(y,)+~j~~,21~~(~)!2d~=Ol 
m 

where Im(y,) is the imaginary part of ym. In the particular case 

A,= 1 and A,=0 for mfl 

we have 

1 

! 
c IB,I* Im(r,> - 4p1 

ImW m ! 
jn’2 It$(#)l* d# = 1. 

Whbw2 -n/2 
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